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Solutions of the Einstein-Maxwell equations with the addition of terms repre- 
senting charged null fluid emitted from a spherically symmetric body and perfect 
fluid are obtained. The solutions of Tupper and Patel and Akabari are derived as 
particular cases. 

1. INTRODUCTION 

Patel and Akabari (1979) have transformed the metric of Einstein's 
universe 

( d s ) 2 _ d t 2 _ d x 2  d y 2 _ d z 2 _  ( x d x  + y d y +  z d z )  2 
b 2 - - ( x 2  q- y2 q-z  2) 

(1) 

into the form 

(ds )  2 = 2du dr + du 2 - b 2 s i n 2 ( r / b ) ( d a  2 + sin2a dfl 2) (2) 

where b is a constant. 
Tupper (1974) has obtained solutions of the Einstein-Maxwell equa- 

tions with the addition of terms representing charged null fluid emitted 
from a spherically symmetric body. The geometry of these solutions is 
described by the metric 

(ds) 2 = 2dudr  + B du 2 - r2( da  2 + sin2a dfl 2) (3) 
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where B is of the form 

B = I  2re(u)  + h ( u )  (4) 
r r 2 

m and h being arbitrary functions of u. 
In the absence of the source (i.e., when m = h = 0), the metric (3) 

becomes flat. Thus the metric (3) is described under the flat background. It 
would be interesting to obtain the metric (3) in the cosmological back- 
ground of Einstein's universe rather than the standard Minkowskian back- 
ground. The object of the present paper is to do just that. 

For this purpose we consider the line element 

( d s ) 2 = 2 d u d r + 2 L ( d u ) e - b 2 s i n Z ( r / b ) ( d a Z  +sinZadfl  z) (5) 

where L is a function of r and u. 
In this paper we find all the solutions of the form (5) for the field 

equations used by Patel and Akabari, which are 

R~ - (1 /2)S ikR = --8~r[ E, k + ov, v k + ( p  + p )V iV  k -- p s i ]  + A S f  (6) 

where 

Eik = - F ~ F  k~ + 1 /46 fF~hF "h 

F,;,k + Fjk., + = o 

Fij;  j = j i  

vivi = O, V,V i = 1 

(7) 

(8) 

(9) 

(lO) 

Here p, p, o, and A are, respectively, the pressure, density, radiation density, 
and the cosmological constant. 

The appropriate forms of v i and V i are (Patel and Akabari, 1979) 

(aX) 

We also assume that 2L is positive. We name the coordinates as 

X I ~ r~ X 2 ~ 0 ~ ,  X 3 ~ / ~ ,  X 4 ~ U 



Sphere Emil-ling Charged Null Fluid in Einstein's Universe 245 

We note that the nonzero components of R~ for the metric (5) are 

[ r4 ] 
. , ,= -  < +  7 

R44 = - -  [ Lrr + 
2 L~ cot( r/ b ) 

R~=R3=[(I-2L)cosec2(r/b)+4L_L. b 2 b 2 2L~cot(r/b)]b 

-2L,,cot(r/b ) 
R~= b 

(12) 

Here and in what follows a suffix denotes partial derivatives (e.g., L r = 
3L/3r, etc.) 

Following the arguments similar to those made by Tupper we have to 
consider the following two cases only. 

Case I: 

F12 = F13 = F24 = F34 = 0 

and at least one of FI4,  /723 nonzero 
Case lh 

FI2 = FI3 = FI4 : F23 : 0 

and at least one of F24 , F34 nonzero 
For the sake of brevity, we are not repeating here the arguments made by 
Tupper. 

2. CASE I 

This case is essentially the same as that discussed by Patel and Akabari. 
If both F~4 and ~3 are nonzero, then their solution is modified by the 
addition of a term representing magnetic monopole. 

In this case the Maxwell equations (8) and (9) give 

e(u) z r 
FI4 = --~---cosec ~ ,  F23 = k s i n a  (13) 

and 

j i  = ( __ eu ~ r 
~-~cosec-~,0,0,0)  (14) 



1 - 2 L  r 8~r, ~ r 
Lrr + - ~ - c o s e c '  b ~ (e-  + k2)cosec4~ = 0 
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where e(u) is an arbitrary function of u and k is a constant. It can be easily 
seen that J '  is a null vector. Using (13), (7), (10), (11), and (12) in (6) we 
obtain 

(15) 

47r 4 r , ,  k2 ( 2Lr r 2 L )  
8 ~ r p = - A + - ~ - c o s e c  - ~ ( e - +  ) -  L . + - - ~ - c o t ~ + - -  

b 2 

and 

81r(p + 0 )  = 4L / b  2 

(16) 

(17) 

2L,, r 
87ro = --~-cot-~ (18) 

It is painless to see that the solution of the differential equation (15) is 

2m r 47r (e2 + k2 ) (co t2b  _ 1) 2L = l - - ~ c o t - ~  + 7 (19) 

where m is an arbitrary function of u. With this expression of 2L the 
expressions for p and o become 

8vrp = - A - 2 L / b  2 (20) 

2m,, r 8tree u / ~ r 
8 f r o -  ~ co t~  + ~ - - -  [ co t -~  - 1), (21) 

The final form of the metric is 

(ds)2= 2dudr-b2sin2( b )(d~2 q-sin2~dfl2) 

[ 2m r _~22 k Z ) ( c o t 2 b _ l ) ] ( d u ) 2  + 1 - - - ~ c o t ~  + (e 2 + (22) 

when k = 0, the metric (22) reduces to that discussed by Patel and Akabari. 
When k -- 0 and b tends to infinity the metric (22) reduces to that discussed 
by Bonner and Vaidya (1970). Also when e and m are constants and k = 0 
the metric (22) reduces to the Nordstrom metric in the cosmological 
background of Einstein's universe. 
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In the absence of the source (i.e., when m : e : k : 0, the metric (22) 
reduces to the metric (2) of Einstein's universe. 

and 

3. CASE II 

In this case the Maxwell's equations (8) and (9) give 

0F24 --  0F34 - 0 
Or Or 

0F24 __ 0F34 

03 ~ 

(23) 

(24) 

0F24 0F34 
jtb2sin2 b -- F24 cota-q- ~ + ~ cosec2a (25) 

Here also j i  is a null vector. The differential equation for the function 2L is 

I - 2 L  ~r  
Lrr + - - ~  cosec'-~ = 0 (26) 

The solution of (26) can be easily seen to be 

2m r 
2L = 1 f f - c o t ~  (27) 

where m is an arbitrary function of u. In this case the expressions for p, p, 
and o become 

8~rp = - A - 2 L / b  2 (28) 

8~r O = A + 6 L / b  2 (29) 

[ - m "  2r  ] 
o = -~--~-cos ~ - Fz4F24 -- F34F34cosec2a c ~  (30) 

b 2 

Suppose that m~ is negative (i.e., the Schwarzschild mass is decreasing). 
Putting a 2 ( u ) = -  m~,/47r, Tupper has given some solutions of (23) and 
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(24). Solut ion (a): 

F24 z 0~(/,/) COS~COSOr 

F34 ~ - a ( u )  sin,Ssina 

F o r  this solut ion J~ and a become 

j , _ _  2 a ( u )  , ,"  . 
b2 cosec-  ~ s m a  cosfl 

_ o ,2 (u)  ,. o ( - ,  +sin  co -'Bco  c2 ) 

Solut ion (b): 

F,4 = / ~ ( , , )  

Thaker and Patel 

(31) 

j ,  fl(u) +r 
-- COt a c o s e c - -  

b 2 b 

o =  
a 2 ( u ) - -  f l2 (u )  cot2 r flZ(u) 

b 2 b b 2 

Solut ion (c): 

F24 = a(  u ) sin a 

F34 = 0 (33)  

Here  J I and o become 

r 
j I -- 2 a ( u )  cosa  cosec 2 -  

b 2 b 

a 2 ( u )  /cos2 ~ r . , 
o - b2 ~ a c o t - g  - s i n - a ]  

W h e n  b tends  to inf in i ty  in the solu t ions  (a), (b), and  (c) we recover  the 

Fo r  this solut ion J J and o are given by 

&4 = 0 (32)  
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results obtained by Tupper. The metric for case II is 

r ( 2m r )  (ds) 2 = 2dudr- b2sin2-~ (da  2 +sin2ad/3 z) + l -  - - ~ c o t ~  (du) 2 (34) 

When b tends to infinity (34) reduces to the metric 

(ds)Z=2dudr-r2(da2+sin2ad~2)+(1--~-)(du) 2 

It should be noted that the above metric is also discussed by Vaidya (1953) 
as a solution of Einstein-Maxwell equations (without null field). 

In the absence of the source (i.e., m = 0) the metric (34) reduces to the 
metric (2) of Einstein's universe. 
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